Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, B.en_US
dc.contributor.authorKang, J. F.en_US
dc.contributor.authorChen, Y. S.en_US
dc.contributor.authorZhang, F. F.en_US
dc.contributor.authorChen, B.en_US
dc.contributor.authorHuang, P.en_US
dc.contributor.authorLiu, L. F.en_US
dc.contributor.authorLiu, X. Y.en_US
dc.contributor.authorWang, Y. Y.en_US
dc.contributor.authorTran, X. A.en_US
dc.contributor.authorWang, Z. R.en_US
dc.contributor.authorYu, H. Y.en_US
dc.contributor.authorChin, Alberten_US
dc.date.accessioned2017-04-21T06:50:01Z-
dc.date.available2017-04-21T06:50:01Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4577-0505-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/134817-
dc.description.abstractA unified microscopic principle is proposed to clarify resistive switching behaviors of transition metal oxide based resistive random access memories (RRAM) for the first time. In this unified microscopic principle, both unipolar and bipolar switching characteristics of RRAM are correlated with the distribution of localized oxygen vacancies in the oxide switching layer, which is governed by the generation and recombination with dissociative oxygen ions. Based on the proposed microscopic principle, an atomistic simulation method is developed to evaluate critical memory performance, and successfully conduct the device optimization. The experimental data are well in line with the developed simulation method.en_US
dc.language.isoen_USen_US
dc.titleOxide-Based RRAM: Unified Microscopic Principle for both Unipolar and Bipolar Switchingen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000300015300105en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper