Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, I-Lingen_US
dc.contributor.authorLi, Cheng-Hsuanen_US
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorHuang, Hsiao-Yunen_US
dc.date.accessioned2017-04-21T06:49:54Z-
dc.date.available2017-04-21T06:49:54Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-9566-5en_US
dc.identifier.issn2153-6996en_US
dc.identifier.urihttp://dx.doi.org/10.1109/IGARSS.2010.5654477en_US
dc.identifier.urihttp://hdl.handle.net/11536/134851-
dc.description.abstractIn the kernel methods, it is very important to choose a proper kernel function to avoid overlapping data. Based this fact, in this paper we mainly utilize a unified kernel optimization framework on the hyperspectral image classification to augment the margin between different classes, and under the kernel optimization framework, to employ the Fisher discriminant criteria formulated in a pairwise manner as the objective functions to optimize the kernel function in Kernel-based nonparametric weighted feature extraction. The experimental results display the superiority of the optimizing kernel function over the RBF kernel function with 5-fold cross-validation method, especially, in the small sample size problem.en_US
dc.language.isoen_USen_US
dc.subjectKernel optimizationen_US
dc.subjectSupport vector machineen_US
dc.subjectFisher criteriaen_US
dc.subjectFeature spaceen_US
dc.titleAPPLYING OPTIMAL ALGORITHM TO DATA-DEPENDENT KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/IGARSS.2010.5654477en_US
dc.identifier.journal2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUMen_US
dc.citation.spage2808en_US
dc.citation.epage2811en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000287933802245en_US
dc.citation.woscount2en_US
Appears in Collections:Conferences Paper