Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, I-Ling | en_US |
dc.contributor.author | Li, Cheng-Hsuan | en_US |
dc.contributor.author | Kuo, Bor-Chen | en_US |
dc.contributor.author | Huang, Hsiao-Yun | en_US |
dc.date.accessioned | 2017-04-21T06:49:54Z | - |
dc.date.available | 2017-04-21T06:49:54Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.isbn | 978-1-4244-9566-5 | en_US |
dc.identifier.issn | 2153-6996 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/IGARSS.2010.5654477 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/134851 | - |
dc.description.abstract | In the kernel methods, it is very important to choose a proper kernel function to avoid overlapping data. Based this fact, in this paper we mainly utilize a unified kernel optimization framework on the hyperspectral image classification to augment the margin between different classes, and under the kernel optimization framework, to employ the Fisher discriminant criteria formulated in a pairwise manner as the objective functions to optimize the kernel function in Kernel-based nonparametric weighted feature extraction. The experimental results display the superiority of the optimizing kernel function over the RBF kernel function with 5-fold cross-validation method, especially, in the small sample size problem. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Kernel optimization | en_US |
dc.subject | Support vector machine | en_US |
dc.subject | Fisher criteria | en_US |
dc.subject | Feature space | en_US |
dc.title | APPLYING OPTIMAL ALGORITHM TO DATA-DEPENDENT KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATION | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1109/IGARSS.2010.5654477 | en_US |
dc.identifier.journal | 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | en_US |
dc.citation.spage | 2808 | en_US |
dc.citation.epage | 2811 | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
dc.contributor.department | Institute of Electrical and Control Engineering | en_US |
dc.identifier.wosnumber | WOS:000287933802245 | en_US |
dc.citation.woscount | 2 | en_US |
Appears in Collections: | Conferences Paper |