完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorLin, Shih-Syunen_US
dc.contributor.authorWu, Huey-Minen_US
dc.contributor.authorChuang, Chun-Hsiangen_US
dc.date.accessioned2017-04-21T06:49:54Z-
dc.date.available2017-04-21T06:49:54Z-
dc.date.issued2010en_US
dc.identifier.isbn978-1-4244-9566-5en_US
dc.identifier.issn2153-6996en_US
dc.identifier.urihttp://dx.doi.org/10.1109/IGARSS.2010.5650388en_US
dc.identifier.urihttp://hdl.handle.net/11536/134852-
dc.description.abstractIn this paper, a novel classification processing based on the spatial information and the concept of Adaboost for hyperspectral image classification is proposed. This classification process is named as adaptive feature extraction with spatial information (AdaFESI). The main idea is adaptive in the sense that subsequent feature spaces are tweaked in favor of those instances misclassified by spectral or spatial classifiers in the previous feature space. All training samples are projected into these feature spaces to train various classifiers and then constitute a multiple classifier system. The experimental results based on two hyperspectral data sets show that the proposed algorithm can generate better classification results.en_US
dc.language.isoen_USen_US
dc.subjectAdaboosten_US
dc.subjectmultiple classifier systemen_US
dc.subjecthyperspectral dataen_US
dc.titleA NOVEL CLASSIFICATION PROCESSING BASED ON THE SPATIAL INFORMATION AND THE CONCEPT OF ADABOOST FOR HYPERSPECTRAL IMAGE CLASSIFICATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/IGARSS.2010.5650388en_US
dc.identifier.journal2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUMen_US
dc.citation.spage2816en_US
dc.citation.epage2819en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000287933802247en_US
dc.citation.woscount0en_US
顯示於類別:會議論文