完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorChuang, Chun-Hsiangen_US
dc.contributor.authorLi, Cheng-Hsuanen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2017-04-21T06:49:56Z-
dc.date.available2017-04-21T06:49:56Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-4686-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/134921-
dc.description.abstractIn a typical supervised classification task, the size of training data fundamentally affects the generality of a classifier. Given a finite and fixed size of training data, the classification result may be degraded as the number of features (dimensionality) increase. Many researches have demonstrated that multiple classifier systems (MCS) or so-called ensembles can alleviate small sample size and high dimensionality concern, and obtain more outstanding and robust results than single models. One of the effective approaches for generating an ensemble of diverse base classifiers is the use of different feature subsets such as random subspace method (RSM). The objective of this research is to develop a novel ensemble technique based on cluster algorithms for strengthening RSM. The results of real data experiments show that the proposed method obtains the sound performance especially in the situation of using less number of classifiers.en_US
dc.language.isoen_USen_US
dc.subjectHyperspectral image classificationen_US
dc.subjectrandom subspace methoden_US
dc.subjectkernel smoothingen_US
dc.titleSUBSPACE SELECTION BASED MULTIPLE CLASSIFIER SYSTEMS FOR HYPERSPECTRAL IMAGE CLASSIFICATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSINGen_US
dc.citation.spage211en_US
dc.citation.epage+en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000276190400052en_US
dc.citation.woscount0en_US
顯示於類別:會議論文