完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Kai-Yingen_US
dc.contributor.authorChen, Long-Shengen_US
dc.contributor.authorChen, Mu-Chenen_US
dc.contributor.authorLee, Chia-Lungen_US
dc.date.accessioned2017-04-21T06:49:39Z-
dc.date.available2017-04-21T06:49:39Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-4869-2en_US
dc.identifier.issn2157-3611en_US
dc.identifier.urihttp://dx.doi.org/10.1109/IEEM.2009.5373231en_US
dc.identifier.urihttp://hdl.handle.net/11536/134929-
dc.description.abstractDue to the growing demand on electricity, how to improve the efficiency of equipment has become one of the critical issues in a thermal power plant. Related works reported that efficiency and availability depend heavily on high reliability and maintainability. Recently, the concept of e-maintenance has been introduced to reduce the cost of maintenance. In e-maintenance systems, the intelligent fault detection system plays a crucial role for identifying failures. Machine learning techniques are at the core of such intelligent systems and can greatly influence their performance. Applying these techniques to fault detection makes it possible to shorten shutdown maintenance and thus increase the capacity utilization rates of equipment. Therefore, this work applies Back-propagation Neural Networks (BPN) to analyze the failures of turbines in thermal power facilities. Finally, a real case from a thermal power plant is provided to evaluate the effectiveness.en_US
dc.language.isoen_USen_US
dc.subjectFault Detectionen_US
dc.subjectMaintenanceen_US
dc.subjectNeural Networksen_US
dc.subjectMachine Learningen_US
dc.subjectFeature Selectionen_US
dc.titleApplying Neural Networks to Detect the Failures of Turbines in Thermal Power Facilitiesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/IEEM.2009.5373231en_US
dc.identifier.journal2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4en_US
dc.citation.spage708en_US
dc.citation.epage711en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000280236600143en_US
dc.citation.woscount0en_US
顯示於類別:會議論文