Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Chih-Yuen_US
dc.contributor.authorHsieh, Yi-Yuen_US
dc.contributor.authorLo, Kuo-Huaen_US
dc.contributor.authorChuang, Jen-Huien_US
dc.date.accessioned2017-04-21T06:48:53Z-
dc.date.available2017-04-21T06:48:53Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-5751-4en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/134979-
dc.description.abstractRecently, an unsupervised image segmentation framework, Segmentation by Aggregating Superpixels (SAS) is proposed and shown to be very promising. However, the texture cues, which have been shown to be very effective in many researches, are not used. In this paper, we propose an effective method for incorporating texture information into the SAS framework, using superpixels. To extract texture information, our algorithm first uses texture filtering and subsequently GMM clustering. Then, we develop an edge-aware low-pass filtering to generate multiple-scale textural superpixels (TXSPs) from the clustering results. Finally, by joining TXSPs with the superpixel set originally used in SAS, the incorporation of texture information is accomplished. Our method achieves superior performance on the Berkeley Segmentation Dataset (BSDS300) under several evaluation criteria when compared to other benchmark algorithms.en_US
dc.language.isoen_USen_US
dc.subjectUnsupervised image segmentationen_US
dc.subjectSuperpixelen_US
dc.subjectTextureen_US
dc.titleINCORPORATING TEXTURE INFORMATION INTO REGION-BASED UNSUPERVISED IMAGE SEGMENTATION USING TEXTURAL SUPERPIXELSen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage4323en_US
dc.citation.epage4327en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000370063604100en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper