Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Terng-Renen_US
dc.contributor.authorHsu, Terng-Yinen_US
dc.contributor.authorChao, Kuan-Chiehen_US
dc.contributor.authorChiang, Shih-Yuanen_US
dc.date.accessioned2017-04-21T06:49:34Z-
dc.date.available2017-04-21T06:49:34Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4244-3619-4en_US
dc.identifier.urihttp://dx.doi.org/10.1109/EMAP.2008.4784274en_US
dc.identifier.urihttp://hdl.handle.net/11536/135033-
dc.description.abstractIn this work, we base oil multi-layered perceptron neural networks with backpropagation algorithm (MLP/BP) to construct multi-input multi-output (MIMO) decision feedback equalizers (DFEs). The proposal is used to recover distorted quadrature phase-shift keying (QPSK) signal. From the simulations, we note that the proposed scheme can recover severe distorted signals as well as suppress intersymbol interference (ISI), adjacent channel interference (ACI) and background additive white Gaussian noise (AWGN). The better bit-error-rate (BER) and packet-error-rate (PER) performance as compared to a set of least-mean-square (LMS) DFEs is achieved. The presented MLP/BP-based MIMO DFE under the severe ISI channels with ACI and AWGN can improve over 1.5dB at PER=10(-1) and BER=10(-3).en_US
dc.language.isoen_USen_US
dc.titleMLP/BP-based MIMO DFEs for Suppressing ISI and ACI to Recover Distorted QPSK Signal in Severe ISI Channelsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/EMAP.2008.4784274en_US
dc.identifier.journal2008 EMAP CONFERENCE PROCEEDINGSen_US
dc.citation.spage243en_US
dc.citation.epage+en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000264237400056en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper