完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCheng, Shih-Sianen_US
dc.contributor.authorWang, Hsin-Minen_US
dc.contributor.authorFu, Hsin-Chiaen_US
dc.date.accessioned2017-04-21T06:49:38Z-
dc.date.available2017-04-21T06:49:38Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4244-1483-3en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/135046-
dc.description.abstractAudio segmentation has received increasing attention in recent years for its potential applications in automatic indexing and transcription of audio data. Among existing audio segmentation approaches, the BIC-based approach proposed by Chen and Gopalakrishnan is most well-known for its high accuracy. However, this window-growingbased segmentation approach suffers from the high computation cost. In this paper, we propose using the efficient divide-and-conquer strategy in audio segmentation. Our approaches detect acoustic changes by recursively partitioning an analysis window into two sub-windows using Delta BIC. The results of experiments conducted on the broadcast news data demonstrate that our approaches not only have a lower computation cost but also achieve a higher segmentation accuracy than window-growing-based segmentation.en_US
dc.language.isoen_USen_US
dc.subjectacoustic change detectionen_US
dc.subjectaudio segmentationen_US
dc.subjectBayesian Information Criterionen_US
dc.subjectdivide-and-conqueren_US
dc.titleBIC-based audio segmentation by divide-and-conqueren_US
dc.typeProceedings Paperen_US
dc.identifier.journal2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12en_US
dc.citation.spage4841en_US
dc.citation.epage+en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000257456703194en_US
dc.citation.woscount0en_US
顯示於類別:會議論文