完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Li, Hua-Fu | en_US |
dc.contributor.author | Huang, Hsin-Yun | en_US |
dc.contributor.author | Chen, Yi-Cheng | en_US |
dc.contributor.author | Liu, Yu-Jiun | en_US |
dc.contributor.author | Lee, Suh-Yin | en_US |
dc.date.accessioned | 2017-04-21T06:48:53Z | - |
dc.date.available | 2017-04-21T06:48:53Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.isbn | 978-0-7695-3502-9 | en_US |
dc.identifier.issn | 1550-4786 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/ICDM.2008.107 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/135084 | - |
dc.description.abstract | Efficient mining of high utility itemsets has become one of the most interesting data mining tasks with broad applications. In this paper, we proposed two efficient one-pass algorithms, MHUI-BIT and MHUI-TID, for mining high utility itemsets from data streams within a transaction-sensitive sliding window. Two effective representations of item information and an extended lexicographical tree-based summary data structure are developed to improve the efficiency of mining high utility itemsets. Experimental results show that the proposed algorithms outperform than the existing algorithms for mining high utility itemsets from data streams. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Fast and Memory Efficient Mining of High Utility Itemsets in Data Streams | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1109/ICDM.2008.107 | en_US |
dc.identifier.journal | ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | en_US |
dc.citation.spage | 881 | en_US |
dc.citation.epage | + | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000264173600101 | en_US |
dc.citation.woscount | 15 | en_US |
顯示於類別: | 會議論文 |