完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorLin, Shih-Chuanen_US
dc.contributor.authorSong, Meng-Shueen_US
dc.contributor.authorKomarov, Oleksiien_US
dc.date.accessioned2017-04-21T06:48:56Z-
dc.date.available2017-04-21T06:48:56Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-1484-5en_US
dc.identifier.issn2161-4393en_US
dc.identifier.urihttp://hdl.handle.net/11536/135090-
dc.description.abstractGenerally, Steady-State Visually Evoked Potentials (SSVEP) has widely recognized advantages, like being easy to use, requiring little user training [1], while Motor Imagery (MI) is not easy to introduce for some subjects. This work introduces a hybrid brain-computer interface (BCI) combines MI and SSVEP strategies - such an approach allows us to improve performance and universality of the system, and also the number of EEG electrodes from 32 to 3 in central area can increase the efficiency of EEG preprocessing to design an effective and easy way to use hybrid BCI system. In this study the Common Spatial Pattern (CSP) algorithm was introduced as a feature extraction method, which provides a high accuracy in event-related synchronization/desynchronization (ERS/ERD)-based BCI. The four most common classifiers (KNNC, PARZENDC, LDC, SVC) were used for accuracy estimation. Results show that support vector classifier (SVC) and K-nearest-neighbor (KNN) classifier provide better performance than others, and it is possible to reach the same good accuracy using 3-channel (C3, Cz, C4) hybrid BCI system, as with usual 32-channel system .en_US
dc.language.isoen_USen_US
dc.subjecthybrid brain computer interface (BCI)en_US
dc.subjectMotor Imagery (MI)en_US
dc.subjectSteady State Visually Evoked Potentials (SSVEP)en_US
dc.subjectelectroencephalogram (EEG) channel reductionen_US
dc.titleDeveloping a Few-channel Hybrid BCI System by Using Motor Imagery with SSVEP Assisten_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)en_US
dc.citation.spage4114en_US
dc.citation.epage4120en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000371465704031en_US
dc.citation.woscount0en_US
顯示於類別:會議論文