完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChao, Yi-Hsiangen_US
dc.contributor.authorTsai, Wei-Hoen_US
dc.contributor.authorWang, Hsin-Minen_US
dc.contributor.authorChang, Ruei-Chuanen_US
dc.date.accessioned2017-04-21T06:48:31Z-
dc.date.available2017-04-21T06:48:31Z-
dc.date.issued2006en_US
dc.identifier.isbn0-7695-2521-0en_US
dc.identifier.issn1051-4651en_US
dc.identifier.urihttp://hdl.handle.net/11536/135182-
dc.description.abstractReal-word applications often involve a binary hypothesis testing problem with one of the two hypotheses ill-defined and hard to be characterized precisely by a single measure. In this paper, we develop a framework that integrates multiple hypothesis testing measures into a unified decision basis, and apply kernel-based classification techniques, namely, Kernel Fisher Discriminant (KFD) and Support Vector Machine (SVM), to optimize the integration. Experiments conducted on speaker verification demonstrate the superiority of our approaches over the predominant approaches.en_US
dc.language.isoen_USen_US
dc.titleA kernel-based discrimination framework for solving hypothesis testing problems with application to speaker verificationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGSen_US
dc.citation.spage229en_US
dc.citation.epage+en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000240707600055en_US
dc.citation.woscount1en_US
顯示於類別:會議論文