Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Chang-Shian | en_US |
dc.contributor.author | Yang, Chao-Chung | en_US |
dc.contributor.author | Liu, Chin-Hui | en_US |
dc.date.accessioned | 2017-04-21T06:48:16Z | - |
dc.date.available | 2017-04-21T06:48:16Z | - |
dc.date.issued | 2006 | en_US |
dc.identifier.isbn | 978-0-7803-9490-2 | en_US |
dc.identifier.issn | 2161-4393 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/135205 | - |
dc.description.abstract | This study employs a Back-Propagation Network as the main structure in flood forecasting to learn and demonstrate the sophisticated nonlinear mapping relationship. A Self Organizing Map network with classification ability is also applied to the solutions and parameters of BPN model in the learning stage, to classify the network parameter rules and obtain the winning parameters. Hence, hydrologic data intervals can then be forecasted, with the outcomes from the previous stage used as the ranges of the parameters in the recall stage. Finally, the effectiveness of methodology is verified by solving a flood discharge forecasting problem in the Wu-Shi basin of Taiwan. | en_US |
dc.language.iso | en_US | en_US |
dc.title | The interval estimation of parameters for Back-Propagation Network to flood discharge forecasting | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10 | en_US |
dc.citation.spage | 3729 | en_US |
dc.citation.epage | + | en_US |
dc.contributor.department | 防災與水環境研究中心 | zh_TW |
dc.contributor.department | Disaster Prevention and Water Environment Research Center | en_US |
dc.identifier.wosnumber | WOS:000245125906074 | en_US |
dc.citation.woscount | 1 | en_US |
Appears in Collections: | Conferences Paper |