Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Chang-Shianen_US
dc.contributor.authorYang, Chao-Chungen_US
dc.contributor.authorLiu, Chin-Huien_US
dc.date.accessioned2017-04-21T06:48:16Z-
dc.date.available2017-04-21T06:48:16Z-
dc.date.issued2006en_US
dc.identifier.isbn978-0-7803-9490-2en_US
dc.identifier.issn2161-4393en_US
dc.identifier.urihttp://hdl.handle.net/11536/135205-
dc.description.abstractThis study employs a Back-Propagation Network as the main structure in flood forecasting to learn and demonstrate the sophisticated nonlinear mapping relationship. A Self Organizing Map network with classification ability is also applied to the solutions and parameters of BPN model in the learning stage, to classify the network parameter rules and obtain the winning parameters. Hence, hydrologic data intervals can then be forecasted, with the outcomes from the previous stage used as the ranges of the parameters in the recall stage. Finally, the effectiveness of methodology is verified by solving a flood discharge forecasting problem in the Wu-Shi basin of Taiwan.en_US
dc.language.isoen_USen_US
dc.titleThe interval estimation of parameters for Back-Propagation Network to flood discharge forecastingen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10en_US
dc.citation.spage3729en_US
dc.citation.epage+en_US
dc.contributor.department防災與水環境研究中心zh_TW
dc.contributor.departmentDisaster Prevention and Water Environment Research Centeren_US
dc.identifier.wosnumberWOS:000245125906074en_US
dc.citation.woscount1en_US
Appears in Collections:Conferences Paper