完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorShen, Liang-Chien_US
dc.contributor.authorYou, Jiun-Deren_US
dc.contributor.authorWeng, Li-Shengen_US
dc.date.accessioned2017-04-21T06:48:40Z-
dc.date.available2017-04-21T06:48:40Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-5090-3332-4en_US
dc.identifier.issn2153-6996en_US
dc.identifier.urihttp://hdl.handle.net/11536/135251-
dc.description.abstractIn the multilayer perceptron (MLP), there was a theorem about the maximum number of separable regions (M) given the number of hidden nodes (H) in the input d-dimensional space. We propose a recurrence relation to prove the theorem using the expansion of recurrence relation instead of proof by induction. We use three-layer radial basis function net (RBF) on the well log data inversion to test the number of hidden nodes determined by the theorem. The three- layer RBF has more nonlinear mapping. In the experiments, we have 31 simulated well log data. 25 well log data are used for training, and 6 are for testing. The experimental results can support the number of hidden nodes determined by the theorem.en_US
dc.language.isoen_USen_US
dc.subjectRadial basis function neten_US
dc.subjectwell log data inversionen_US
dc.subjectrecurrence relationen_US
dc.subjectmultilayer perceptronen_US
dc.titlePROOF OF HIDDEN NODE NUMBER AND EXPERIMENTS ON RBF NETWORK FOR WELL LOG DATA INVERSIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)en_US
dc.citation.spage2791en_US
dc.citation.epage2794en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000388114602216en_US
dc.citation.woscount0en_US
顯示於類別:會議論文