完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Huang, Kou-Yuan | en_US |
dc.contributor.author | Shen, Liang-Chi | en_US |
dc.contributor.author | You, Jiun-Der | en_US |
dc.contributor.author | Weng, Li-Sheng | en_US |
dc.date.accessioned | 2017-04-21T06:48:40Z | - |
dc.date.available | 2017-04-21T06:48:40Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.isbn | 978-1-5090-3332-4 | en_US |
dc.identifier.issn | 2153-6996 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/135251 | - |
dc.description.abstract | In the multilayer perceptron (MLP), there was a theorem about the maximum number of separable regions (M) given the number of hidden nodes (H) in the input d-dimensional space. We propose a recurrence relation to prove the theorem using the expansion of recurrence relation instead of proof by induction. We use three-layer radial basis function net (RBF) on the well log data inversion to test the number of hidden nodes determined by the theorem. The three- layer RBF has more nonlinear mapping. In the experiments, we have 31 simulated well log data. 25 well log data are used for training, and 6 are for testing. The experimental results can support the number of hidden nodes determined by the theorem. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Radial basis function net | en_US |
dc.subject | well log data inversion | en_US |
dc.subject | recurrence relation | en_US |
dc.subject | multilayer perceptron | en_US |
dc.title | PROOF OF HIDDEN NODE NUMBER AND EXPERIMENTS ON RBF NETWORK FOR WELL LOG DATA INVERSION | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | en_US |
dc.citation.spage | 2791 | en_US |
dc.citation.epage | 2794 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000388114602216 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |