Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorYang, Jia-Rongen_US
dc.date.accessioned2017-04-21T06:48:40Z-
dc.date.available2017-04-21T06:48:40Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-5090-3332-4en_US
dc.identifier.issn2153-6996en_US
dc.identifier.urihttp://hdl.handle.net/11536/135252-
dc.description.abstractThe Hopfield neural network (HNN) is adopted for velocity picking in the time-velocity semblance image of seismic data. A Lyapunov function is generated from the velocity picking problem. We use the gradient descent method to decrease the Lyapunov function and derive the equation of motion. The Lyapunov function can reach the minimum. According to the equation of motion, each neuron is updated until no change. The linking of the converged network neurons represents the best polyline in velocity picking. We have experiments on simulated seismic data. The picking results are good. It can improve the seismic data processing and interpretation.en_US
dc.language.isoen_USen_US
dc.subjectHopfield neural networken_US
dc.subjectLyapunov functionen_US
dc.subjectseismic velocity pickingen_US
dc.titleSEISMIC VELOCITY PICKING BY HOPFIELD NEURAL NETWORKen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)en_US
dc.citation.spage3190en_US
dc.citation.epage3193en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000388114603053en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper