Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Ming-Hanen_US
dc.contributor.authorChen, Kuan-Huaen_US
dc.contributor.authorLin, I-Chenen_US
dc.date.accessioned2017-04-21T06:48:57Z-
dc.date.available2017-04-21T06:48:57Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4799-8339-1en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/135267-
dc.description.abstractEstimating upper body poses from a sequence of depth images is a challenging problem. Lately, the state-of-art work adopted a randomized forest method to label human parts in real time. However, it requires enormous training data to obtain favorable results. In this paper, we propose using a novel two-stage method to estimate the probability maps of upper body parts of users. These maps are then used to evaluate the region fitness of body parts for pose recovery. Experiments show that the proposed method can obtain satisfactory outcome in real time and it requires a moderate size of training data.en_US
dc.language.isoen_USen_US
dc.subjectPose estimationen_US
dc.subjectdepth imageen_US
dc.subjectarm poseen_US
dc.subjectrandomized foresten_US
dc.titleREAL-TIME UPPER BODY POSE ESTIMATION FROM DEPTH IMAGESen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)en_US
dc.citation.spage2234en_US
dc.citation.epage2238en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000371977802070en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper