Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Hunta H. -W.en_US
dc.contributor.authorLin, Louis Y. -Z.en_US
dc.contributor.authorHuang, Ryan H-M.en_US
dc.contributor.authorWen, Charles H-P.en_US
dc.date.accessioned2017-04-21T06:50:10Z-
dc.date.available2017-04-21T06:50:10Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-5618-0en_US
dc.identifier.issn0190-3918en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ICPP.2014.28en_US
dc.identifier.urihttp://hdl.handle.net/11536/135294-
dc.description.abstractGeneral-purpose computing on graphics processing unit (GPGPU) enables the possibility of parallel computing for Static Timing Analysis (STA) of VLSI designs. However, memory access and synchronization between massively many cores become challenges to parallelizing STA. In this work, we developed a fast CUDA-Accelerated STA engine (named CASTA) that incorporates four novel techniques including Table-Index Remapping (TIR), Texture-Accelerated Rendering (TAR), Cell Levelization & Type Sorting (CLTS) and Timing-Table Restructuring (TTR) to enable high parallelism. Cell Levelization & Type Sorting (CLTS) levelizes cells and sort their types in order to efficiently access the same timing library. Timing-Table Restructuring (TTR) modifies the data structure for timing signals of cells to increase memory throughput. Table-Index Remapping (TIR) re-maps the axes of timing tables to retrieve data more efficiently while Texture-Accelerated Rendering (TAR) expands look-up tables (LUTs) to avoid extrapolation and stores LUTs in the texture for speed. As a result, our experimental result indicates that CASTA successfully enables high parallelism and outperforms a commercial tool by a three-order speedup on average over several benchmark circuits.en_US
dc.language.isoen_USen_US
dc.subjectCUDAen_US
dc.subjectGPUen_US
dc.subjectSTAen_US
dc.subjectParallel Computingen_US
dc.titleCASTA: CUDA-Accelerated Static Timing Analysis for VLSI Designsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICPP.2014.28en_US
dc.identifier.journal2014 43RD INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP)en_US
dc.citation.spage192en_US
dc.citation.epage200en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000393410400020en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper