Full metadata record
DC FieldValueLanguage
dc.contributor.authorRupp, K.en_US
dc.contributor.authorTillet, Phen_US
dc.contributor.authorSmith, B. F.en_US
dc.contributor.authorGrasser, T.en_US
dc.contributor.authorJuengel, A.en_US
dc.date.accessioned2017-04-21T06:50:07Z-
dc.date.available2017-04-21T06:50:07Z-
dc.date.issued2013en_US
dc.identifier.isbn978-0-7354-1185-2en_US
dc.identifier.issn0094-243Xen_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.4825816en_US
dc.identifier.urihttp://hdl.handle.net/11536/135393-
dc.description.abstractEigenvalue computations for large sparse matrices such as the Lanczos method are commonly based on Krylov subspace techniques. One of the dominant operations in such algorithms are iterated computations of inner products with the same vector in order to preserve orthogonality of the Krylov basis. These operations can be accelerated by existing BLAS functionality using GPUs. However, this is not fully efficient due to unnecessary memory transfers. We present improved implementations in CUDA and OpenCL, which are now available in ViennaCL, PETSc and SLEPc, and demonstrate an up to two-fold performance gain over existing GPU vendor libraries.en_US
dc.language.isoen_USen_US
dc.subjectLinear Algebraen_US
dc.subjectEigenvaluesen_US
dc.subjectKrylov methodsen_US
dc.subjectGPUen_US
dc.subjectCUDAen_US
dc.subjectOpenCLen_US
dc.subjectViennaCLen_US
dc.subjectPETScen_US
dc.subjectSLEPcen_US
dc.titleA Note on the GPU Acceleration of Eigenvalue Computationsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1063/1.4825816en_US
dc.identifier.journal11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013)en_US
dc.citation.volume1558en_US
dc.citation.spage1536en_US
dc.citation.epage1539en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000331472800363en_US
dc.citation.woscount1en_US
Appears in Collections:Conferences Paper