Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaon, Georgeen_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.date.accessioned2017-04-21T06:49:48Z-
dc.date.available2017-04-21T06:49:48Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-4673-4863-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/135428-
dc.description.abstractThis paper overviews a series of recent approaches to front-end processing, acoustic modeling, language modeling, and back-end search and system combination which have made contributions for large vocabulary continuous speech recognition (LVCSR) systems. These approaches include the feature transformations, speaker-adaptive features, and discriminative features in front-end processing, the feature-space and model-space discriminative training, deep neural networks, and speaker adaptation in acoustic modeling, the backoff smoothing, large-span modeling, and model regularization in language modeling, and the system combination, cross-adaptation, and boosting in search and system combination. Some future directions for LVCSR research are also addressed.en_US
dc.language.isoen_USen_US
dc.titleRecent Developments in Large Vocabulary Continuous Speech Recognitionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2012 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC)en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000319456200099en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper