完整後設資料紀錄
DC 欄位語言
dc.contributor.authorJou, Yow-Jenen_US
dc.contributor.authorLan, Chien-Lunen_US
dc.date.accessioned2014-12-08T15:18:50Z-
dc.date.available2014-12-08T15:18:50Z-
dc.date.issued2009en_US
dc.identifier.isbn978-0-7354-0685-8en_US
dc.identifier.issn0094-243Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/13545-
dc.description.abstractThe dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.en_US
dc.language.isoen_USen_US
dc.subjecttransportationen_US
dc.subjectMonte Carlo Markov Chainen_US
dc.subjectstate space modelen_US
dc.subjectKalman filteren_US
dc.titlePath Flow Estimation Using Time Varying Coefficient State Space Modelen_US
dc.typeArticleen_US
dc.identifier.journalCOMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCEen_US
dc.citation.volume1148en_US
dc.citation.spage501en_US
dc.citation.epage504en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000280417500125-
顯示於類別:會議論文