完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKuo, Chih-Enen_US
dc.contributor.authorLiang, Sheng-Fuen_US
dc.date.accessioned2017-04-21T06:48:27Z-
dc.date.available2017-04-21T06:48:27Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-4577-1470-2en_US
dc.identifier.issn2163-4025en_US
dc.identifier.urihttp://hdl.handle.net/11536/135517-
dc.description.abstractMultiscale entropy is a recently developed method to estimate complexity associated with the long-range temporal correlation of a time series. Since sleep EEG patterns also change regularly from light to deep sleep states, we firstly applied multiscale permutation entropy (MPE) to analysis sleep EEG to investigate the relations between changes of sleep stages and the MPE values. It was observed that correlation coefficient between the averaged MPE values of sleep EEG and the manual scoring of sleep stages can reach over 0.7. Then a MPE-based sleep scoring method for single channel EEG was developed. After training based on the data from 10 subjects, the overall sensitivity of the proposed automatic sleep scoring method combining MPE, autoregressive models, and linear discriminant analysis can reach 89.1% evaluated by the data of the other 10 subjects. Due to high accuracy and requiring only single-channel EEG, the proposed method has good applicability for sleep monitoring and home cares.en_US
dc.language.isoen_USen_US
dc.subjectMultiscale permutation entropy (MPE)en_US
dc.subjectautomatic sleep scoringen_US
dc.subjectsingle channel EEGen_US
dc.subjectautoregressive (AR) modelen_US
dc.subjectlinear discriminant analysis (LDA)en_US
dc.titleAutomatic stage scoring of single-channel sleep EEG based on multiscale permutation entropyen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS)en_US
dc.citation.spage448en_US
dc.citation.epage451en_US
dc.contributor.department智慧型仿生系統研究中心zh_TW
dc.contributor.departmentBiomimetic Systems Research Centeren_US
dc.identifier.wosnumberWOS:000395304400113en_US
dc.citation.woscount0en_US
顯示於類別:會議論文