完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Wu, Shinq-Jen | en_US |
dc.contributor.author | Wu, Cheng-Tao | en_US |
dc.date.accessioned | 2017-04-21T06:48:29Z | - |
dc.date.available | 2017-04-21T06:48:29Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.isbn | 978-981-08-8718-6 | en_US |
dc.identifier.issn | 2010-4618 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/135531 | - |
dc.description.abstract | Much research adopts various evolution computation technologies to identify system parameters and structures of highly nonlinear S-system model. They, always focus on evolution skills and neglect that the choice of performance index is the key for learning. A suitable performance index not only provides good searching direction but also reduces computation time. In this study, a migration synchronous genetic algorithm (MSGA) is proposed for achieving global optimal search. Twenty eight performances of concentration- or slope-error-based indexes for parameter identification is examined and discussed. When the chosen performance candidates are used for structure identification, only one- or two-steps pruning-operation is necessary. The pruning threshold is set to be 10(-15) to ensure a safely pruning action is guaranteed positively. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Inverse engineer | en_US |
dc.subject | parameter estimation | en_US |
dc.subject | evolution computation | en_US |
dc.subject | genetic algorithm | en_US |
dc.title | Migration Synchronous Genetic Algorithm for Reverse Engineering | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS | en_US |
dc.citation.volume | 5 | en_US |
dc.citation.spage | 271 | en_US |
dc.citation.epage | 275 | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
dc.contributor.department | Institute of Electrical and Control Engineering | en_US |
dc.identifier.wosnumber | WOS:000392766100059 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |