完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Shinq-Jenen_US
dc.contributor.authorWu, Cheng-Taoen_US
dc.date.accessioned2017-04-21T06:48:29Z-
dc.date.available2017-04-21T06:48:29Z-
dc.date.issued2011en_US
dc.identifier.isbn978-981-08-8718-6en_US
dc.identifier.issn2010-4618en_US
dc.identifier.urihttp://hdl.handle.net/11536/135531-
dc.description.abstractMuch research adopts various evolution computation technologies to identify system parameters and structures of highly nonlinear S-system model. They, always focus on evolution skills and neglect that the choice of performance index is the key for learning. A suitable performance index not only provides good searching direction but also reduces computation time. In this study, a migration synchronous genetic algorithm (MSGA) is proposed for achieving global optimal search. Twenty eight performances of concentration- or slope-error-based indexes for parameter identification is examined and discussed. When the chosen performance candidates are used for structure identification, only one- or two-steps pruning-operation is necessary. The pruning threshold is set to be 10(-15) to ensure a safely pruning action is guaranteed positively.en_US
dc.language.isoen_USen_US
dc.subjectInverse engineeren_US
dc.subjectparameter estimationen_US
dc.subjectevolution computationen_US
dc.subjectgenetic algorithmen_US
dc.titleMigration Synchronous Genetic Algorithm for Reverse Engineeringen_US
dc.typeProceedings Paperen_US
dc.identifier.journalBIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICSen_US
dc.citation.volume5en_US
dc.citation.spage271en_US
dc.citation.epage275en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000392766100059en_US
dc.citation.woscount0en_US
顯示於類別:會議論文