完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Bor-Shingen_US
dc.contributor.authorJan, Gene Euen_US
dc.contributor.authorWu, Huey-Dongen_US
dc.contributor.authorLin, Bor-Shyhen_US
dc.contributor.authorChen, Sao-Jieen_US
dc.date.accessioned2017-04-21T06:49:49Z-
dc.date.available2017-04-21T06:49:49Z-
dc.date.issued2015en_US
dc.identifier.isbn978-0-7695-5668-0en_US
dc.identifier.urihttp://dx.doi.org/10.1109/IIH-MSP.2015.51en_US
dc.identifier.urihttp://hdl.handle.net/11536/135579-
dc.description.abstractThis study describes the design of a fast and high performance wheeze recognition system. The proposed wheezing detection algorithm is based on order truncate average (OTA) and back-propagation neural network (BPNN). Some features are then extracted from the processed spectra to train a BPNN. Eventually, the new testing samples go through the trained BPNN to recognize whether they are wheezing sounds. Experimental results show a high sensitivity of 0.946 and a specificity of 1.0 in qualitative analysis of wheeze recognition.en_US
dc.language.isoen_USen_US
dc.subjectasthmaen_US
dc.subjectwheezing detectionen_US
dc.subjectbilateral filteringen_US
dc.subjectorder truncate averageen_US
dc.subjectback-propagation neural networken_US
dc.titleUsing Back-Propagation Neural Network for Automatic Wheezing Detectionen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/IIH-MSP.2015.51en_US
dc.identifier.journal2015 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP)en_US
dc.citation.spage49en_US
dc.citation.epage52en_US
dc.contributor.department影像與生醫光電研究所zh_TW
dc.contributor.departmentInstitute of Imaging and Biomedical Photonicsen_US
dc.identifier.wosnumberWOS:000375671900013en_US
dc.citation.woscount0en_US
顯示於類別:會議論文