Full metadata record
DC FieldValueLanguage
dc.contributor.authorVigneron, Vincenten_US
dc.contributor.authorChen, Hsinen_US
dc.contributor.authorChen, Yen-Taien_US
dc.contributor.authorLai, Hsin-Yien_US
dc.contributor.authorChen, You-Yinen_US
dc.date.accessioned2017-04-21T06:48:37Z-
dc.date.available2017-04-21T06:48:37Z-
dc.date.issued2010en_US
dc.identifier.isbn978-3-642-15994-7en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-642-15995-4_59en_US
dc.identifier.urihttp://hdl.handle.net/11536/135588-
dc.description.abstractWe describe in this paper some advanced protocols for the discrimination and classification of neuronal spike waveforms within multichannel electrophysiological recordings. Sparse decomposition was used to serarate the linearly independent signals underlying sensory information in cortical spike firing patterns. We introduce some modifications in the the IDE algorithm to take into account prior knowledge on the spike waveforms. We have investigated motor cortex responses recorded during movement in freely moving rats to provide evidence for the relationship between these patterns and special behavioral task.en_US
dc.language.isoen_USen_US
dc.subjectSparse decompositionen_US
dc.subjectclassificationen_US
dc.subjectsemi-supervised learningen_US
dc.subjectAtomic Decompositionen_US
dc.subjectIDE akgorithmen_US
dc.titleDecomposition of EEG Signals for Multichannel Neural Activity Analysis in Animal Experimentsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-642-15995-4_59en_US
dc.identifier.journalLATENT VARIABLE ANALYSIS AND SIGNAL SEPARATIONen_US
dc.citation.volume6365en_US
dc.citation.spage474en_US
dc.citation.epage+en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000286868200059en_US
dc.citation.woscount2en_US
Appears in Collections:Conferences Paper