完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Ping-Chengen_US
dc.contributor.authorWang, Chi-Hsuen_US
dc.contributor.authorLee, Tsu-Tianen_US
dc.date.accessioned2017-04-21T06:48:41Z-
dc.date.available2017-04-21T06:48:41Z-
dc.date.issued2009en_US
dc.identifier.isbn978-3-642-03968-3en_US
dc.identifier.issn1865-0929en_US
dc.identifier.urihttp://hdl.handle.net/11536/135614-
dc.description.abstractIn this paper, we propose an indirect adaptive control scheme using Hopfield-based dynamic neural network for SISO nonlinear systems with external disturbances. Hopfield-based dynamic neural networks are used to obtain uncertain function estimations in an indirect adaptive controller, and a compensation controller is used to suppress the effect of approximation error and disturbance. The weights of Hopfield-based dynamic neural network are on-line tuned by the adaptive laws derived in the sense of Lyapunov, so that the stability of the closed-loop system can be guaranteed. In addition. the tracking error can be attenuated to a desired level by selecting some parameters adequately. Simulation results illustrate the applicability of the proposed control scheme. The designed parsimonious structure of the Hopfield-based dynamic neural network makes the practical implementation of the work in this paper much easier.en_US
dc.language.isoen_USen_US
dc.subjectHopfield-based dynamic neural networken_US
dc.subjectdynamic neural networken_US
dc.subjectLyapunov stability theoryen_US
dc.subjectindirect adaptive controlen_US
dc.titleIndirect Adaptive Control Using Hopfield-Based Dynamic Neural Network for SISO Nonlinear Systemsen_US
dc.typeProceedings Paperen_US
dc.identifier.journalENGINEERING APPLICATIONS OF NEURAL NETWORKS, PROCEEDINGSen_US
dc.citation.volume43en_US
dc.citation.spage336en_US
dc.citation.epage+en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000274227200031en_US
dc.citation.woscount5en_US
顯示於類別:會議論文