完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Hsueh, Chu-Hsuan | en_US |
dc.contributor.author | Wu, I-Chen | en_US |
dc.contributor.author | Tseng, Wen-Jie | en_US |
dc.contributor.author | Yen, Shi-Jim | en_US |
dc.contributor.author | Chen, Jr-Chang | en_US |
dc.date.accessioned | 2017-04-21T06:49:50Z | - |
dc.date.available | 2017-04-21T06:49:50Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.isbn | 978-3-319-27992-3 | en_US |
dc.identifier.isbn | 978-3-319-27991-6 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/978-3-319-27992-3_4 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/135624 | - |
dc.description.abstract | Monte-Carlo tree search (MCTS) has been successfully applied to Chinese dark chess (CDC). In this paper, we study how to improve and analyze the playing strength of an MCTS-based CDC program, named DARKKNIGHT, which won the CDC tournament in the 17th Computer Olympiad. We incorporate the three recent techniques, early playout terminations, implicit minimax backups, and quality-based rewards, into the program. For early playout terminations, playouts end when reaching states with likely outcomes. Implicit minimax backups use heuristic evaluations to help guide selections of MCTS. Quality-based rewards adjust rewards based on online collected information. Our experiments showed that the win rates against the original DARKKNIGHT were 60.75 %, 70.90 % and 59.00 %, respectively for incorporating the three techniques. By incorporating all together, we obtained a win rate of 76.70 %. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Strength Improvement and Analysis for an MCTS-Based Chinese Dark Chess Program | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1007/978-3-319-27992-3_4 | en_US |
dc.identifier.journal | ADVANCES IN COMPUTER GAMES, ACG 2015 | en_US |
dc.citation.volume | 9525 | en_US |
dc.citation.spage | 29 | en_US |
dc.citation.epage | 40 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000375768500004 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |