完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsueh, Chu-Hsuanen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorTseng, Wen-Jieen_US
dc.contributor.authorYen, Shi-Jimen_US
dc.contributor.authorChen, Jr-Changen_US
dc.date.accessioned2017-04-21T06:49:50Z-
dc.date.available2017-04-21T06:49:50Z-
dc.date.issued2015en_US
dc.identifier.isbn978-3-319-27992-3en_US
dc.identifier.isbn978-3-319-27991-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-27992-3_4en_US
dc.identifier.urihttp://hdl.handle.net/11536/135624-
dc.description.abstractMonte-Carlo tree search (MCTS) has been successfully applied to Chinese dark chess (CDC). In this paper, we study how to improve and analyze the playing strength of an MCTS-based CDC program, named DARKKNIGHT, which won the CDC tournament in the 17th Computer Olympiad. We incorporate the three recent techniques, early playout terminations, implicit minimax backups, and quality-based rewards, into the program. For early playout terminations, playouts end when reaching states with likely outcomes. Implicit minimax backups use heuristic evaluations to help guide selections of MCTS. Quality-based rewards adjust rewards based on online collected information. Our experiments showed that the win rates against the original DARKKNIGHT were 60.75 %, 70.90 % and 59.00 %, respectively for incorporating the three techniques. By incorporating all together, we obtained a win rate of 76.70 %.en_US
dc.language.isoen_USen_US
dc.titleStrength Improvement and Analysis for an MCTS-Based Chinese Dark Chess Programen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-27992-3_4en_US
dc.identifier.journalADVANCES IN COMPUTER GAMES, ACG 2015en_US
dc.citation.volume9525en_US
dc.citation.spage29en_US
dc.citation.epage40en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000375768500004en_US
dc.citation.woscount0en_US
顯示於類別:會議論文