完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChao, Yi-Hsiangen_US
dc.contributor.authorTsai, Wei-Hoen_US
dc.contributor.authorWang, Hsin-Minen_US
dc.date.accessioned2017-04-21T06:48:51Z-
dc.date.available2017-04-21T06:48:51Z-
dc.date.issued2008en_US
dc.identifier.isbn978-1-4244-2942-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/135628-
dc.description.abstractThe GMM-UBM system is the current state-of the-art approach for text-independent speaker verification. The advantage of the approach is that both target speaker model and impostor model (UBM) have generalization ability to handle "unseen" acoustic patterns. However, since GMM-UBM uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in rejecting impostors\' voices that are similar to the target speaker\'s voice. To overcome this limitation, we propose a discriminative feedback adaptation (DFA) framework that reinforces the discriminability between the target speaker model and the antimodel, while preserves the generalization ability of the GMM-UBM approach. This is done by adapting the UBM to a target-speaker-dependent anti-model based on a minimum verification squared-error criterion, rather than estimating from scratch by applying the conventional discriminative training schemes. The results of experiments conducted on the NIST2001-SRE database show that DFA substantially improves the performance of the conventional GMM-UBM approach.en_US
dc.language.isoen_USen_US
dc.subjectDiscriminative feedback adaptationen_US
dc.subjectlog-likelihood ratioen_US
dc.subjectminimum verification squared-error linear regressionen_US
dc.subjectspeaker verificationen_US
dc.titleDISCRIMINATIVE FEEDBACK ADAPTATION FOR GMM-UBM SPEAKER VERIFICATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2008 6TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING, PROCEEDINGSen_US
dc.citation.spage169en_US
dc.citation.epage172en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000264234600043en_US
dc.citation.woscount0en_US
顯示於類別:會議論文