Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Y-Chuang | en_US |
dc.contributor.author | Huang, Yong-Zen | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.date.accessioned | 2017-04-21T06:49:03Z | - |
dc.date.available | 2017-04-21T06:49:03Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.isbn | 978-0-7354-0590-5 | en_US |
dc.identifier.issn | 0094-243X | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/135651 | - |
dc.description.abstract | A k-regular hamiltonian and hamiltonian connected graph G is optimal fault-tolerant hamiltonian and hamiltonian connected if G remains hamiltonian after removing at most k - 2 nodes and/or edges and remains hamiltonian connected after removing at most k - 3 nodes and/or edges. In this paper, we investigate a construction scheme to construct optimal fault-tolerant hamiltonian and hamiltonian connected graphs. Hence, some of the generalized hypercubes, Twisted-cubes, Crossed-cubes, and Mobius cubes are optimal fault-tolerant hamiltonian and optimal fault-tolerant hamiltonian connected. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Twisted-cubes | en_US |
dc.subject | Crossed-cubes | en_US |
dc.subject | Mobius cubes | en_US |
dc.subject | generalized hypercubes | en_US |
dc.subject | recursive circulant graphs | en_US |
dc.subject | optimal fault-tolerant | en_US |
dc.title | Optimal Fault-Tolerant Hamiltonian and Hamiltonian Connected Graphs | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE | en_US |
dc.citation.volume | 1060 | en_US |
dc.citation.spage | 345 | en_US |
dc.citation.epage | + | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000265147700080 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Conferences Paper |