完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Qien_US
dc.contributor.authorHuang, Chingchunen_US
dc.contributor.authorWang, Shih-yuen_US
dc.contributor.authorChiu, Wei-Chenen_US
dc.contributor.authorChen, Tsuhanen_US
dc.date.accessioned2017-04-21T06:49:03Z-
dc.date.available2017-04-21T06:49:03Z-
dc.date.issued2007en_US
dc.identifier.isbn978-1-4244-1016-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/135658-
dc.description.abstractA major problem in metropolitan areas is searching for parking spaces. In this paper, we propose a novel method for parking space detection. Given input video captured by a camera, we can distinguish the empty spaces from the occupied spaces by using an 8-class Support Vector Machine (SVM) classifier with probabilistic outputs. Considering the inter-space correlation, the outputs of the SVM classifier are fused together using a Markov Random Field (MRF) framework. The result is much improved detection performance, even when there are significant occlusion and shadowing effects in the scene. Experimental results are given to show the robustness of the proposed approach.en_US
dc.language.isoen_USen_US
dc.title<bold>ROBUST PARKING SPACE DETECTION CONSIDERING INTER-SPACE CORRELATION</bold>en_US
dc.typeProceedings Paperen_US
dc.identifier.journal2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5en_US
dc.citation.spage659en_US
dc.citation.epage+en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000252357701053en_US
dc.citation.woscount7en_US
顯示於類別:會議論文