完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Chia-Wenen_US
dc.contributor.authorLing, Zhi-Hongen_US
dc.date.accessioned2017-04-21T06:49:06Z-
dc.date.available2017-04-21T06:49:06Z-
dc.date.issued2007en_US
dc.identifier.isbn978-1-4244-1250-1en_US
dc.identifier.issn1095-2055en_US
dc.identifier.urihttp://hdl.handle.net/11536/135667-
dc.description.abstractThis paper presents a compressed-domain fall incident detection scheme for intelligent homecare applications. First, a compressed-domain object segmentation scheme is performed to extract moving objects based on global motion estimation and local motion clustering. After detecting the moving objects, three compressed-domain features of each object are then extracted for identifying and locating fall incidents. The proposed system can differentiate fall-down from squatting by taking into account the event duration. Our experiments show that the proposed method can correctly detect fall incidents in real time.en_US
dc.language.isoen_USen_US
dc.subjecthomecareen_US
dc.subjectcompressed-domain processingen_US
dc.subjectvideo surveillanceen_US
dc.subjectfall detectionen_US
dc.titleAutomatic fall incident detection in compressed video for intelligent homecareen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS - 16TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, VOLS 1-3en_US
dc.citation.spage1172en_US
dc.citation.epage+en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000257636700191en_US
dc.citation.woscount16en_US
顯示於類別:會議論文