Full metadata record
DC FieldValueLanguage
dc.contributor.authorWen, Weien_US
dc.contributor.authorWu, Chi-Ruoen_US
dc.contributor.authorHu, Xiaofangen_US
dc.contributor.authorLiu, Beiyeen_US
dc.contributor.authorHo, Tsung-Yien_US
dc.contributor.authorLi, Xinen_US
dc.contributor.authorChen, Yiranen_US
dc.date.accessioned2017-04-21T06:49:13Z-
dc.date.available2017-04-21T06:49:13Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4503-3520-1en_US
dc.identifier.issn0738-100Xen_US
dc.identifier.urihttp://dx.doi.org/10.1145/2744769.2744795en_US
dc.identifier.urihttp://hdl.handle.net/11536/135729-
dc.description.abstractIn implementations of neuromorphic computing systems (NCS), memristor and its crossbar topology have been widely used to realize fully connected neural networks. However, many neural networks utilized in real applications often have a sparse connectivity, which is hard to be efficiently mapped to a crossbar structure. Moreover, the scale of the neural networks is normally much larger than that can be offered by the latest integration technology of memristor crossbars. In this work, we propose AutoNCS - an EDA framework that can automate the NCS designs that combine memristor crossbars and discrete synapse modules. The connections of the neural networks are clustered to improve the utilization of the memristor elements in crossbar structures by taking into account the physical design cost of the NCS. Our results show that AutoNCS can substantially enhance the utilization efficiency of memristor crossbars while reducing the wirelength, area and delay of the physical designs of the NCS.en_US
dc.language.isoen_USen_US
dc.subjectAlgorithmsen_US
dc.subjectDesignen_US
dc.subjectNeuromorphic Computing Systemsen_US
dc.subjectNeural Networksen_US
dc.subjectSpectral Clusteringen_US
dc.subjectMemristor Crossbaren_US
dc.subjectSparsityen_US
dc.titleAn EDA Framework for Large Scale Hybrid Neuromorphic Computing Systemsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1145/2744769.2744795en_US
dc.identifier.journal2015 52ND ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC)en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000370268400012en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper