Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Dongruien_US
dc.contributor.authorChuang, Chun-Hsiangen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2017-04-21T06:50:10Z-
dc.date.available2017-04-21T06:50:10Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4799-9953-8en_US
dc.identifier.issn2156-8103en_US
dc.identifier.urihttp://hdl.handle.net/11536/135731-
dc.description.abstractDrowsy driving is a pervasive problem among drivers, and is also an important contributor to motor vehicle accidents. It is very important to be able to estimate a driver\'s drowsiness level online so that preventative actions could be taken to avoid accidents. However, because of large individual differences, it is very challenging to design an estimation algorithm whose parameters fit all subjects. Some subject-specific calibration data must be used to tailor the algorithm for each new subject. This paper proposes a domain adaptation with model fusion (DAMF) online drowsiness estimation approach using EEG signals. By making use of EEG data from other subjects in a transfer learning framework, DAMF requires very little subject-specific calibration data, which significantly increases its utility in practice. We demonstrate using a simulated driving experiment and 15 subjects that DAMF can achieve much better performance than several other approaches.en_US
dc.language.isoen_USen_US
dc.subjectDrowsy drivingen_US
dc.subjectEEGen_US
dc.subjectdomain adaptationen_US
dc.subjectmodel fusionen_US
dc.subjecttransfer learningen_US
dc.titleOnline Driver\'s Drowsiness Estimation Using Domain Adaptation with Model Fusionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII)en_US
dc.citation.spage904en_US
dc.citation.epage910en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000377887000140en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper