Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Bing-Yangen_US
dc.contributor.authorLee, Jui-Shengen_US
dc.contributor.authorGuo, Jiun-Inen_US
dc.date.accessioned2017-04-21T06:49:27Z-
dc.date.available2017-04-21T06:49:27Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4799-8745-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/135814-
dc.description.abstractAdaBoost classification with Haar-like features [1] is commonly adopted for object detection. Feature calculation in AdaBoost algorithm is the most time-consuming part, which occupies over 98% of the computation and cannot reach real-time processing with CPU computing only. In this paper we propose an object detection design for heterogeneous computing with OpenCL. By adopting the techniques of scale parallelizing, stage partitioning, and dynamic stage scheduling on AdaBoost algorithm, the proposed design solves load-unbalanced problems when realize in multicore CPU and GPU platform. The proposed object detection design achieves 32.5 fps at D1 resolution on an AMD A10-7850K processor.en_US
dc.language.isoen_USen_US
dc.titleAn AdaBoost Object Detection Design for Heterogeneous Computing with OpenCLen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW)en_US
dc.citation.spage286en_US
dc.citation.epage287en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000380469500143en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper