完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Tsung-Yuen_US
dc.contributor.authorLin, Yang-Yinen_US
dc.contributor.authorLiu, Yu-Tingen_US
dc.contributor.authorFang, Chieh-Ningen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2017-04-21T06:49:12Z-
dc.date.available2017-04-21T06:49:12Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4673-7428-6en_US
dc.identifier.issn1544-5615en_US
dc.identifier.urihttp://hdl.handle.net/11536/135818-
dc.description.abstractIn this paper, we develop a novel multi-fusion brain-computer interface (BCI) based on linear discriminant analysis (LDA) to deal with motor imagery (MI) classification problem. We combine filter bank and sub-band common spatial pattern (SBCSP) to extract features from EEG data in the preprocessing phase, and then LDA classifiers are applied to classify brain activities to identify either left or right hand imagery. To further foster the performance of the proposed system, a fuzzy integral (FI) approach is employed to fuse information sources, and particle swarm optimization (PSO) algorithm is exploited to globally update parameters in the fusion structure. Consequently, our experimental results indicate that the proposed system provides superior performance compared to other approaches.en_US
dc.language.isoen_USen_US
dc.subjectBrain-Computer Interface (BCI)en_US
dc.subjectMotor Imagery (MI)en_US
dc.subjectSub-Band Common Spatial Pattern (SBCSP)en_US
dc.subjectFuzzy Integral (FI)en_US
dc.subjectParticle Swarm Optimization (PSO)en_US
dc.titleDeveloping a Novel Multi-fusion Brain-Computer Interface (BCI) System with Particle Swarm Optimization for Motor Imagery Tasken_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015)en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000370288300044en_US
dc.citation.woscount0en_US
顯示於類別:會議論文