完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorLin, Shih-Chuanen_US
dc.contributor.authorLiang, Wei-Gangen_US
dc.contributor.authorKomarov, Oleksiien_US
dc.contributor.authorSong, Meng-Shueen_US
dc.date.accessioned2017-04-21T06:48:53Z-
dc.date.available2017-04-21T06:48:53Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-4543-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/135880-
dc.description.abstractBrain Computer Interface(BCI) systems provide an additional way for people to interact with external environment without using peripheral nerves or muscles[1]. In a variety of BCI systems, a BCI system based on the steady-state visual evoked potentials (SSVEP) is one most common system known for application, because of its ease of use and good performance with little user training. In this study, the common frequency pattern method (CFP) is used to improve the accuracy of our EEG-based SSVEP BCI system. There are four basic classifiers (SVM, KNNC, PARZENDC, LDC) in this paper to estimate the accuracy of our SSVEP system. Without using CFP, the highest accuracy of the EEG-based SSVEP system was 80%. By using CFP, the accuracy could be upgraded to 95%.en_US
dc.language.isoen_USen_US
dc.subjectBrain computer interface(BCI)en_US
dc.subjectsteady-state visual evoked potential(SSVEP)en_US
dc.subjectcommon frequency pattern(CFP)en_US
dc.subjectelectroencephalography(EEG)en_US
dc.titleDevelopment of SSVEP-based BCI using Common Frequency Pattern to Enhance System Performanceen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BRAIN COMPUTER INTERFACES (CIBCI)en_US
dc.citation.spage30en_US
dc.citation.epage35en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000380529000006en_US
dc.citation.woscount0en_US
顯示於類別:會議論文