完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Bo-Wenen_US
dc.contributor.authorWu, Mei-Chenen_US
dc.contributor.authorLin, Chiou-Hungen_US
dc.contributor.authorHuang, Chiung-Fenen_US
dc.contributor.authorChen, An-Pinen_US
dc.date.accessioned2017-04-21T06:48:58Z-
dc.date.available2017-04-21T06:48:58Z-
dc.date.issued2016en_US
dc.identifier.isbn978-3-662-47926-1en_US
dc.identifier.isbn978-3-662-47925-4en_US
dc.identifier.issn2194-5357en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-662-47926-1_28en_US
dc.identifier.urihttp://hdl.handle.net/11536/135903-
dc.description.abstractIn practice, many physics principles have been employed to derive various models of financial engineering. However, few studies have been done on the feature selection of finance on time series data. The purpose of this paper is to determine if the behavior of market participant can be detected from historical price. For this purpose, the proposed algorithm utilizes back propagation neural network (BPNN) and works with new feature selection approach in data mining, which is used to generate more information of market behavior. This study is design for exchange-traded fund (ETF) to develop the day-trade strategy with high profit. The results show that BPNN hybridized with financial physical feature, as compared with the traditional approaches such as random walk, typically result in better performance.en_US
dc.language.isoen_USen_US
dc.subjectData miningen_US
dc.subjectBack-propagation neural network (BPNN)en_US
dc.subjectExchange-traded fund (ETF)en_US
dc.subjectFinancial physicsen_US
dc.subjectBehavior discoveryen_US
dc.titleThe Discovery of Financial Market Behavior Integrated Data Mining on ETF in Taiwanen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-662-47926-1_28en_US
dc.identifier.journalHARMONY SEARCH ALGORITHMen_US
dc.citation.volume382en_US
dc.citation.spage285en_US
dc.citation.epage294en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000381804100028en_US
dc.citation.woscount0en_US
顯示於類別:會議論文