完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChou, Jen-Jaien_US
dc.contributor.authorLiang, Chao-Chinen_US
dc.contributor.authorWu, Hung-Chunen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorWu, Tung-Yingen_US
dc.date.accessioned2017-04-21T06:48:41Z-
dc.date.available2017-04-21T06:48:41Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4673-9606-6en_US
dc.identifier.urihttp://hdl.handle.net/11536/135992-
dc.description.abstractMulti-objective flexible job-shop scheduling problem (MO-FJSP) is very important in both fields of production management and combinatorial optimization. Wu et al. proposed a Monte-Carlo Tree Search (MCTS) to solve MO-FJSP and successfully improved the performance of MCTS to find 17 Pareto solutions: 4 of Kacem 4x5, 3 of 10x7, 4 of 8x8, 4 of 10x10, and 2 of 15x10. This paper proposes a new MCTS-based algorithm for MO-FJSP problem by modifying their algorithm. Our experimental results show that our new algorithm significantly outperforms their algorithm for large problems, especially for Kacem 15x10. This shows that the new algorithm tends to have better potential of solving harder MO-FJSP problems.en_US
dc.language.isoen_USen_US
dc.subjectMonte-Carlo Tree Searchen_US
dc.subjectMulti-Objective Flexible Job Shop Scheduling Problemen_US
dc.subjectEvolutionary Algorithmen_US
dc.subjectRapid Action Value Estimatesen_US
dc.titleA New MCTS-Based Algorithm for Multi-Objective Flexible Job Shop Scheduling Problemen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI)en_US
dc.citation.spage136en_US
dc.citation.epage141en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000380406200014en_US
dc.citation.woscount0en_US
顯示於類別:會議論文