完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Kang, Po-Ya | en_US |
dc.contributor.author | Wu, I-Chen | en_US |
dc.contributor.author | Hsueh, Chu-Hsuan | en_US |
dc.date.accessioned | 2017-04-21T06:48:42Z | - |
dc.date.available | 2017-04-21T06:48:42Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.isbn | 978-1-4673-9606-6 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/135994 | - |
dc.description.abstract | In this paper, we solve the portfolio selection problem. In our approach, we first propose a modified immune algorithm (IA) to reuse the memory cells we got in earlier stages, so that more information can be utilized in the next stages. Our experimental results show that the modified IA can successfully obtain significantly higher return than genetic algorithm (GA) and particle swarm optimization (PSO). Second, we. also propose a hybrid of IA and PSO (IA-PSO), and a hybrid of GA and PSO. From our experiments, the hybrid IA-PSO maintains the high return while becoming more stable. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | portfolio selection problem | en_US |
dc.subject | immune algorithm | en_US |
dc.subject | genetic algorithm | en_US |
dc.subject | particle swarm optimization | en_US |
dc.subject | bootstrapping | en_US |
dc.title | Applying Hueristic Algorithms to Portfolio Selection Problem | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2015 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI) | en_US |
dc.citation.spage | 323 | en_US |
dc.citation.epage | 329 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000380406200042 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |