完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChou, Chien-Lien_US
dc.contributor.authorLin, Chin-Hsienen_US
dc.contributor.authorChiang, Tzu-Hsuanen_US
dc.contributor.authorChen, Hua-Tsungen_US
dc.contributor.authorLee, Suh-Yinen_US
dc.date.accessioned2017-04-21T06:48:18Z-
dc.date.available2017-04-21T06:48:18Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4799-7079-7en_US
dc.identifier.issn2330-7927en_US
dc.identifier.urihttp://hdl.handle.net/11536/136030-
dc.description.abstractWith the rapid development of the camera industry, surveillance systems become more and more popular in our daily life. However, it is very time-consuming to find out specific persons or objects from a mass of surveillance videos with long duration. For efficient browsing surveillance videos, numerous researchers are devoted to eliminating the inherent spatiotemporal redundancy for video synopsis. Nevertheless, too much information in a synopsis frame may distract viewers\' attention. Therefore, we propose a novel surveillance video synopsis system using coherent event classification to alleviate the above issues. Object trajectories are extracted by background subtraction, and then clustered. Coherent events containing similar actions of objects with different moving speeds are obtained by applying the longest common subsequence algorithm to measure the similarity among trajectories. The trajectories in each cluster are rescheduled and stitched onto the background to generate synopsis videos with coherent events. Comprehensive experiments conducted on various surveillance videos demonstrate the convincing performance of our proposed system.en_US
dc.language.isoen_USen_US
dc.subjectsurveillanceen_US
dc.subjectvideo synopsisen_US
dc.subjectvideo summarizationen_US
dc.subjectcoherent eventen_US
dc.subjecttrajectory clusteringen_US
dc.subjectLongest Common Subsequence (LCS)en_US
dc.titleCOHERENT EVENT-BASED SURVEILLANCE VIDEO SYNOPSIS USING TRAJECTORY CLUSTERINGen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 IEEE International Conference on Multimedia & Expo Workshops (ICMEW)en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000380531100115en_US
dc.citation.woscount0en_US
顯示於類別:會議論文