完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chi-Ouen_US
dc.contributor.authorZhuo, Ye-Qien_US
dc.contributor.authorYeh, Chao-Chunen_US
dc.contributor.authorLin, Che-Minen_US
dc.contributor.authorLiao, Shih-weien_US
dc.date.accessioned2017-04-21T06:48:18Z-
dc.date.available2017-04-21T06:48:18Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4673-7278-7en_US
dc.identifier.urihttp://dx.doi.org/10.1109/BigDataCongress.2015.64en_US
dc.identifier.urihttp://hdl.handle.net/11536/136033-
dc.description.abstractApache Hadoop system is a software framework with the capability to process large-scale datasets across a cluster of distributed machines using MapReduce programming model. However, there are two main challenges for system administrators to manage the Hadoop system; (1) system administrators are difficult to tune the parameters appropriately since the behaviors and characteristics of large-scale distributed systems are too complicated; (2) there are dozens of configuration parameters affecting the system performance which makes the configuration parameters tuning task becomes troublesome. In this paper, we focus on optimizing the Hadoop MapReduce job performance by tuning configuration parameters, and then we propose an analytical method to help system administrators choose approximately optimal configuration parameters depending on the characteristics of each application. Our approach has two key phases: prediction and optimization phase. The prediction phase is to estimate the performance of a MapReduce job, whereas the optimization phase is to search the approximately optimal configuration parameters strategically by invoking the predictor repeatedly. In our evaluation results, our work can help system administrators to improve the performance about 2X to 8X better than traditional methods.en_US
dc.language.isoen_USen_US
dc.subjectDistributed Systemen_US
dc.subjectMachine Learningen_US
dc.subjectOptimization Problemen_US
dc.titleMachine Learning-Based Configuration Parameter Tuning on Hadoop Systemen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/BigDataCongress.2015.64en_US
dc.identifier.journal2015 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2015en_US
dc.citation.spage386en_US
dc.citation.epage392en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000380443700054en_US
dc.citation.woscount0en_US
顯示於類別:會議論文