Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, H. L.en_US
dc.contributor.authorChang, C. T.en_US
dc.contributor.authorKuo, C. T.en_US
dc.date.accessioned2017-04-21T06:48:32Z-
dc.date.available2017-04-21T06:48:32Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4673-7356-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/136043-
dc.description.abstractBeyond Si CMOS technology is the current challenging for next generation transistor. As demand for nano-scaled devices increase, the ability to manipulate the building blocks of electronic is essential. Catalytic-assisted CNTs are integrated into trenches, holes, parallel plates under CH4/H-2 gases by microwave plasma chemical vapor deposition or electron cyclotron resonance deposition. The trench and parallel plates are used to fabricate for gate electrodes, while the holes are used to make interconnections. Results indicate the orientation of grown CNTs is dominated by pattern geometry. The field emission results show that the CNTs exhibit robust electronic properties with emission densities of over 1mA/cm(2) at 3.97 and 6.30 V/mu m indicating the high electron emission efficiency as the CNT field effect transistor application. The growth models of Fe, Ni and CoSi2 and application for nanoclectronics are purposed.en_US
dc.language.isoen_USen_US
dc.titleNanostructured Material Formation for Beyond Si Devicesen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM)en_US
dc.citation.spage285en_US
dc.citation.epage287en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000380530400083en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper