完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorRanga, S. Sai Kalyanen_US
dc.date.accessioned2017-04-21T06:48:31Z-
dc.date.available2017-04-21T06:48:31Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4799-7560-0en_US
dc.identifier.urihttp://dx.doi.org/10.1109/SSCI.2015.25en_US
dc.identifier.urihttp://hdl.handle.net/11536/136047-
dc.description.abstractHybrid Brain Computer Interface (BCI) is gaining attention as it can provide better performance or increase the number of user commands to control an external device. Hybrid BCI system using Motor imagery (MI) and Steady-state visually evoked potential (SSVEP) is one such system. Maintaining the performance during channel reduction is important in practical applications. In this paper we propose a combined feature extraction method using Canonical Correlation Analysis (CCA) and Common Frequency Pattern (CFP) method, where the features obtained from these methods were combined for classification. We used LDC and PARZEN for estimating the classification accuracy for the proposed method and individual method. Highest accuracy of 96.1 % is obtained for combined feature method (CCA+CFP). Whereas, the accuracy is 89.6% with CCA and 91.6% with CFP method. A significance test has shown that the performance of the proposed method is significantly different from both the individual methods (p < 0.05).en_US
dc.language.isoen_USen_US
dc.titleCombining CCA and CFP for Enhancing the Performance in the Hybrid BCI Systemen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/SSCI.2015.25en_US
dc.identifier.journal2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI)en_US
dc.citation.spage103en_US
dc.citation.epage108en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000380431500015en_US
dc.citation.woscount0en_US
顯示於類別:會議論文