Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhong, C. W.en_US
dc.contributor.authorTsai, H. Y.en_US
dc.contributor.authorLin, H. C.en_US
dc.contributor.authorLiu, K. C.en_US
dc.contributor.authorHuang, T. Y.en_US
dc.date.accessioned2017-04-21T06:49:47Z-
dc.date.available2017-04-21T06:49:47Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4799-9928-6en_US
dc.identifier.issn1946-1550en_US
dc.identifier.urihttp://hdl.handle.net/11536/136098-
dc.description.abstractHigh performance p-type SnO TFTs were fabricated and characterized in this work. Owing to thermal oxygen annealing process, the originally tin-rich oxide film was transformed into a polycrystalline SnO, resulting in decent field-effect mobility and high on/off current ratio. Electrical stability was evaluated by examining the threshold voltage shift under negative bias stresses at different stress times. A scenario considering the passivation/de-passivation of acceptor defects in the channel and the hole trapping of the gate oxide is proposed to explain the observed instability of the SnO TFTs.en_US
dc.language.isoen_USen_US
dc.titleStability of High Performance p-type SnO TFTsen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 22ND INTERNATIONAL SYMPOSIUM ON THE PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS (IPFA 2015)en_US
dc.citation.spage84en_US
dc.citation.epage87en_US
dc.contributor.department電機學院zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentCollege of Electrical and Computer Engineeringen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000380466200024en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper