完整後設資料紀錄
DC 欄位語言
dc.contributor.authorQiu, Jun-Weien_US
dc.contributor.authorChiang, Ting-Huien_US
dc.contributor.authorLo, Chi Chungen_US
dc.contributor.authorLin, Li-Minen_US
dc.contributor.authorVan, Lan-Daen_US
dc.contributor.authorTseng, Yu-Cheeen_US
dc.contributor.authorChing, Yu-Taien_US
dc.date.accessioned2017-04-21T06:49:58Z-
dc.date.available2017-04-21T06:49:58Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-5967-9en_US
dc.identifier.urihttp://dx.doi.org/10.1109/iThings.2014.31en_US
dc.identifier.urihttp://hdl.handle.net/11536/136130-
dc.description.abstractThis paper proposes a continuous location and skeletal tracking system using multiple RGB-Depth sensors (such as Kinects) deployed along a corridor with overlapping coverages. First, we transform the coordinates of all sensor into a unified coordinate. Second, the system recognizes users (such as patients under rehabilitation) from different views of these sensors and classifies them by their patient IDs. Third, the patient information can be continuously handed over among sensors when they move around the area. Experiment results show that the skeletal association during handover achieves approximately 90.61% in accuracy and 96.89% in precision in 44,817 experiment trials. By our observation, injured people possess asymmetric gait parameters especially on the ratio of the duration of the swing/stance phase. For example, the injured foot generally has a longer swinging duration than the healthy side. The proposed system has potential in patient rehabilitation monitoring applications.en_US
dc.language.isoen_USen_US
dc.subjectDepth sensoren_US
dc.subjectGait analysisen_US
dc.subjectRehabilitationen_US
dc.subjectSensor networken_US
dc.subjectSkeleton trackingen_US
dc.titleContinuous Human Location and Posture Tracking by Multiple Depth Sensorsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/iThings.2014.31en_US
dc.identifier.journal2014 IEEE International Conference (iThings) - 2014 IEEE International Conference on Green Computing and Communications (GreenCom) - 2014 IEEE International Conference on Cyber-Physical-Social Computing (CPS)en_US
dc.citation.spage155en_US
dc.citation.epage160en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000380548400022en_US
dc.citation.woscount0en_US
顯示於類別:會議論文