完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChou, K. P.en_US
dc.contributor.authorPrasad, M.en_US
dc.contributor.authorLin, Y. Y.en_US
dc.contributor.authorJoshi, S.en_US
dc.contributor.authorLin, C. T.en_US
dc.contributor.authorChang, J. Y.en_US
dc.date.accessioned2017-04-21T06:49:56Z-
dc.date.available2017-04-21T06:49:56Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-4518-4en_US
dc.identifier.urihttp://hdl.handle.net/11536/136141-
dc.description.abstractIn this paper, a Takagi-Sugeno-Kang (TSK) type collaborative fuzzy rule based system is proposed with the help of knowledge learning ability of collaborative fuzzy clustering (CFC). The proposed method split a huge dataset into several small datasets and applying collaborative mechanism to interact each other and this process could be helpful to solve the big data issue. The proposed method applies the collective knowledge of CFC as input variables and the consequent part is a linear combination of the input variables. Through the intensive experimental tests on prediction problem, the performance of the proposed method is as higher as other methods. The proposed method only uses one half information of given dataset for training process and provide an accurate modeling platform while other methods use whole information of given dataset for training.en_US
dc.language.isoen_USen_US
dc.subjectprediction and identification problemen_US
dc.subjectfuzzy c-means (FCM)en_US
dc.subjectcollaborative mechanismen_US
dc.subjectbig dataen_US
dc.subjectsystem modelingen_US
dc.titleTakagi-Sugeno-Kang Type Collaborative Fuzzy Rule Based Systemen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM)en_US
dc.citation.spage315en_US
dc.citation.epage320en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000381485400044en_US
dc.citation.woscount0en_US
顯示於類別:會議論文