完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Po-Ningen_US
dc.contributor.authorLin, Hsuan-Yinen_US
dc.contributor.authorMoser, Stefan M.en_US
dc.date.accessioned2017-04-21T06:49:34Z-
dc.date.available2017-04-21T06:49:34Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4673-7704-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/136303-
dc.description.abstractThe exact value of the average error probability of an arbitrary code (linear or nonlinear) using maximum likelihood decoding is studied on binary erasure channels (BECs) with arbitrary erasure probability 0 < delta < 1. The family of the fair linear codes, which are equivalent to a concatenation of several Hadamard linear codes, is proven to perform better (in the sense of average error probability with respect to maximum-likelihood decoding) than all other linear codes for many values of the blocklength n and for a dimension k = 3. It is then noted that the family of fair linear codes and the family of fair nonlinear weak fit\'\', codes both maximize the minimum Hamming distance under certain blocklengths. However, the fair nonlinear weak flip codes actually outperform the fair linear codes, i.e., linearity and global optimality cannot be simultaneously achieved for the number of codewords being M - 2(3).en_US
dc.language.isoen_USen_US
dc.subjectBinary erasure channelen_US
dc.subjectgeneralized Plotkin bounden_US
dc.subjectoptimal nonlinear channel codingen_US
dc.subjectr-wise Hamming distanceen_US
dc.subjectweak flip codesen_US
dc.titleNonlinear Codes Outperform the Best Linear Codes on the Binary Erasure Channelen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT)en_US
dc.citation.spage1751en_US
dc.citation.epage1755en_US
dc.contributor.department電機學院zh_TW
dc.contributor.departmentCollege of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000380904701161en_US
dc.citation.woscount0en_US
顯示於類別:會議論文