完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Mu-Chenen_US
dc.contributor.authorHsiao, Yu-Hsiangen_US
dc.contributor.authorReddy, Himadeepen_US
dc.contributor.authorTiwari, Manoj Kumaren_US
dc.date.accessioned2017-04-21T06:48:57Z-
dc.date.available2017-04-21T06:48:57Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4673-8305-9en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ICETET.2015.12en_US
dc.identifier.urihttp://hdl.handle.net/11536/136330-
dc.description.abstractIn cross-docking operations, planners need to coordinate the inbound, docking and outbound logistics operations to ensure a smooth flow of goods across the supply chain. The operation management of cross docking is a crucial task with high complexity for the logistics systems. This paper attempts to address the Vehicle Routing Problems (VRPs) of distribution centers with multiple cross-docks for processing multiple products. In this paper, the mathematical model intends to minimize the total cost of operations subjected to a set of time and capacity constraints. Due to high complexity of model, a variant of Particle Swarm Optimization (PSO) with a Self-Learning approach is tailored to solve the VRP. Two test problems are generated and results are obtained.en_US
dc.language.isoen_USen_US
dc.subjectE-Logisticsen_US
dc.subjectSupply Chain Managementen_US
dc.subjectCross-Docken_US
dc.subjectVehicle Routing Problemen_US
dc.subjectParticle Swarm Optimizationen_US
dc.titleA Particle Swarm Optimization Approach for Route Planning with Cross-Dockingen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICETET.2015.12en_US
dc.identifier.journal2015 7TH INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING & TECHNOLOGY (ICETET)en_US
dc.citation.spage1en_US
dc.citation.epage6en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000380618000001en_US
dc.citation.woscount0en_US
顯示於類別:會議論文