完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Chao-Hsien_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.date.accessioned2017-04-21T06:49:01Z-
dc.date.available2017-04-21T06:49:01Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-4799-9988-0en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/136361-
dc.description.abstractConventional supervised topic model for multi-class classification is inferred via the variational inference algorithm where the model parameters are estimated by maximizing the lower bound of the logarithm of marginal likelihood function over input documents and labels. The classification accuracy is constrained by the variational lower bound. In this study, we aim to improve the classification accuracy by relaxing this constraint through directly maximizing the negative cross entropy error function via a deep unfolding inference (DUI). The inference procedure for class posterior is treated as the layer-wise learning in a deep neural network. The classification accuracy in DUI is accordingly increased by using the estimated topic parameters according to the exponentiated updates. Deep learning of supervised topic model is achieved through an error back-propagation algorithm. Experimental results show the superiority of DUI to variational Bayes inference in supervised topic model.en_US
dc.language.isoen_USen_US
dc.subjectDeep unfoldingen_US
dc.subjectvariational inferenceen_US
dc.subjectsupervised topic modelen_US
dc.titleDEEP UNFOLDING INFERENCE FOR SUPERVISED TOPIC MODELen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGSen_US
dc.citation.spage2279en_US
dc.citation.epage2283en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000388373402084en_US
dc.citation.woscount0en_US
顯示於類別:會議論文