完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Hung-Chunen_US
dc.contributor.authorLin, Yuan-Peien_US
dc.date.accessioned2017-04-21T06:48:59Z-
dc.date.available2017-04-21T06:48:59Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-4799-9988-0en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/136365-
dc.description.abstractFor a time-correlated channel, we consider the differential feedback of the geometrical mean decomposition (GMD) precoder, which is known to be optimal for a number of criteria. When the channel varies slowly, we can expect the optimal GMD precoders of consecutive channel uses to be close. We consider the feedback of the so-called differential precoder and show that it lies in a neighborhood of the identity matrix using matrix perturbation theory. Furthermore the radius of the neighborhood is proportional to a time-correlation parameter. Such a characterization is crucial for efficient quantization of the differential precoder. Simulations are given to demonstrate that, with a small feedback rate, the performance of the proposed differential GMD comes close to the case when perfect channel state information is available to the transmitter.en_US
dc.language.isoen_USen_US
dc.subjectMIMO systemen_US
dc.subjectprecoderen_US
dc.subjectdifferential feedbacken_US
dc.subjecttime-correlated channelen_US
dc.subjectgeometrical mean decompositionen_US
dc.titleFEEDBACK OF DIFFERENTIAL PRECODER FOR GEOMETRICAL MEAN DECOMPOSITION SYSTEMSen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGSen_US
dc.citation.spage3876en_US
dc.citation.epage3880en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000388373404004en_US
dc.citation.woscount0en_US
顯示於類別:會議論文