完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsai, Min-Jenen_US
dc.contributor.authorHsu, Chien-Lunen_US
dc.contributor.authorYin, Jin-Shengen_US
dc.contributor.authorYuadi, Imamen_US
dc.date.accessioned2017-04-21T06:48:59Z-
dc.date.available2017-04-21T06:48:59Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-4673-7258-9en_US
dc.identifier.issn1945-7871en_US
dc.identifier.urihttp://hdl.handle.net/11536/136370-
dc.description.abstractEven digital content is widely used nowadays, printed documents are still ubiquitously accepted and circulated. Therefore, identifying the printed character source is essential for criminal investigations to authenticate the digital copies of the printed documents. This study carefully examines the important statistical features from Gray Level Co-occurrence Matrix (GLCM), Discrete Wavelet Transform (DWT), Spatial filters, Wiener filter, and Gabor filter to identify the printer source for Chinese characters by using support vector machine (SVM) and decision fusion of feature selection. Even the subject of printed Chinese character source identification has been investigated, the proposed technique further expands the feature space which achieves superior experimental results and outperforms the techniques described in the literatures. Therefore, the methodology proposed in this study can accomplish high classification accuracy rate which show promising applications for real world digital forensics.en_US
dc.language.isoen_USen_US
dc.subjectForensicsen_US
dc.subjectDiscrete Wavelet Transform (DWT)en_US
dc.subjectSupport Vector Machines (SVM)en_US
dc.subjectWiener Filteren_US
dc.subjectGabor Filteren_US
dc.titleDigital Forensics for Printed Character Source Identificationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME)en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000389574300035en_US
dc.citation.woscount0en_US
顯示於類別:會議論文